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Applied Seismology Consulting —What we do

ASC has over 20 years of experience in applying the methods and analyses of seismology to a wide range
of engineering applications at all scales from regional earthquake site characterisation to microseismic
and acoustic emission studies. Services are targeted at supplying an integrated work package along the
full data path through sensor array design, data acquisition, processing and interpretation. These
services include reviewing natural and induced seismicity, ground motion prediction and monitoring,
working within regulatory systems and designing, operating and reporting on microseismic monitoring.
Our main areas of application include:

= Geothermal,

Radwaste storage,

Underground storage: Carbon, Hydrogen, Natural Gas

= Reservoir engineering

Civil Engineering/Geotechnical

Laboratory-testing applications (Acoustic Emission and ultrasonic monitoring) in association with LEA
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What is a seismic event ?
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* Failure could result in the opening and
shear of fractures and pre-existing
structures

f
Ty PO AR
ANy,
Ta Tt WL E T >
s O

i Ay
L ]
B . il
LB TRR I " X

oy
S

* Results in the change in stress
distribution, pore fluid pressure,
mechanical deformation, and change in
material properties
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Earthquake Research Centre, University of Tokyo

appliedseismology.co.uk



Seismic Sources

Natural sources * Induced sources

Focus and Epicenter of an Earthquake

http://www.destress-h2020.eu/en/home/

@ 1995 West Publishing Company
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Triggered or Induced ?

Induced

Where the causative activity can account for
most of the stress change or energy required to
produce the seismicity

Triggered

Where the causative activity accounts for only a
fraction of the stress change or energy
associated with the seismicity (i.e. tectonic
loading plays a primary role)

(after McGarr & Simpson, 1997)
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Factors causing stimulated seismicity

stress changes

pore pressure changes

volume changes

application or removal of a load
some combination of the above
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What can Seismic
Monitoring do for us?




Reservoir Stimulation

® Real time imaging of stimulated fracture
network

* Real-time feed-back of effectiveness of a
hydrofracture stimulation

* map extraction and injection paths in a
producing field.

* assessment of the completion objectives.

* Investigation of active fault zones,
compaction and subsidence.

* Traffic light system for induced seismicity

appliedseismology.co.uk
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Underground Hydrogen Storage

Safety

Seismic Risk analysis

Traffic light systems
Induced Seismicity

caprock an
storage integrity

Performance

Monitoring of
storage
performance
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Mining

Open pit
monitoring

e = ’Risk monitoring

Subsidence risk
monitoring
Induced seismicity

Rockburst monitoring

Slope stability monitoring

Seismic array design
Fracture analysis from
seismic catalogues
Validation of
geomechanical models

Fracture imaging and
characterisation
Cave mapping
Imaging rock damage
Wireless instrumentation

appliedseismology.co.uk
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Deep Geothermal Operations

® Gain information on the development of
Engineered Geothermal Systems (EGS) and
enhance our understanding of long-term
reservoir behaviour.

® Increase the productivity and recovery of the
reservoir and assist in the design and optimal
location of production wells

* Map the position, growth and effectiveness of
hydrofracture stimulation to assess completion
objectives

* Map extraction and injection paths, treatment
history and fluid migration

appliedseismology.co.uk
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Hydraulic Fracture Mechanics
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Geological Storage of Radioactive Waste

.« Containment feasibility and monitoring ofg

* Monitoring of site stability and risk against . .
& Y 8 radioactive waste geological storg

natural earthquakes Disposal Facility-wide

* detect fractures around engineered Laboratory | TN, - Ernvirormental safd Coo 3 _Microseismic Monitoring
structures and delineate potential fluid Testing .
pathways

® Quantify damage and disturbance
accumulation through excavation and
thermal loading

* Assessing the Excavation Damage Zone by

spatially and temporally mapping fractures Acoustic Emission and
. Ultrasonic Monitoring

Post-closure-— | .

performance ’

assesment

i
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Civil Engineering

* Monitoring of structural responses during
environmental loading and concrete curing.

* Safety monitoring of tunnels and
underground infrastructure.

® Site characterisation and suitability
assessment

* Slope stability analysis and integrity
assurance.

® Early warning of catastrophic failure of rock,
concrete and engineered materials.

* Investigation of active fault zones,
compaction and subsidence in and around
engineered structures.

appliedseismology.co.uk
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Rock mechanics in the laboratory

® Full characterisation of rock
deformation and fracturing
processes under fully controlled
conditions

* Understanding Earth processes and
geomaterials response to

engineering processes

* Material testing and rheological
characterisation

* Validation of geomechanical
models

appliedseismology.co.uk

LEA Lombos (ERGO) Associates Ltd
Geo-Engineering Instrumentation Systems
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Fractures

Process in a material as a
reaction to stress changes

Strain beyond the elastic point

Return to steady state
(balance)

Sudden

Causes change in material
properties

appliedseismology.co.uk



Stress levels and stress changes

Fracturing and the associated acoustic emission occurs when:

* The magnitude of the stress changes in the material are be large
enough to result in failure.

* The nature of the stress change promotes failure.

appliedseismology.co.uk

Stress failure

ASC
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| ASC
Mohr Circle

Stress state for plane with normal in the o,
-0, plane at an angle 6 to O,

Shear Stress (7)
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The strength of materials

The strength of a fault (or shear

=
stress required for failure) is given 2
w
by £
2 <
T=1,+uU(c,-P) 3
(%)
where

T, - cohesion

u - coefficient of friction
G, - hormal stress

P - pore pressure

&

u=tan ¢
TO

NORMAL STRESS ()

Mohr-Coulomb failure criterion (1776)



Stress-Strain ¢
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Changing the balance : induced seismicity

Shear Stress (t)
|

Quarry
0,4 horizontal
Thrust fault

Oy Oy

Fluid injection
All faults
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Normal Stress (o)

I “Dry” Reservoir

o, vertical
Normal fault

v

“Wet” Reservoir
o, vertical
Normal fault

ASC

After Scholz, 2002
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Crack initiation and propagation:

Stress-Strain
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The role of seismology

When a material (e.g. rock) undergoes brittle
failure, elastic energy is radiated from the point e 2 h -
of failure (or slip) into the surrounding material. W o~

| N R

The passage of elastic waves through a material

is influenced by the properties (e.g. elastic
moduli) of that material.




Seismic Monitoring Methods

Active ultrasonic surveys
-Actively examine the rock

-An array of transmitters sends signals to an
array of receivers

-Velocity changes measured between
transmitter-receiver pairs using a cross-
correlation technique

Acoustic Emission/Microseismic
monitoring
-Passive technique

-AE/MS events occur when fractures in the rock
are created or when pre-existing fractures
propagate.

appliedseismology.co.uk



The seismic wave

appliedseismology.co.uk
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The Seismic Wave

ASC

Dilation Vibration is along

Compression I} l direction of travel
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Cannot propagate
through fluids
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Wavelength

Vibration is perpendicular
to direction of travel

P-Wave

Pressure Wave

S-Wave

Shear Waves
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Surface Waves

Love Wave

Significant at borehole fluid/solid interface
and at free surface of the ground/tunnel

appliedseismology.cvc\)/ﬁu'

From http://www.geo.utep.edu/kidd/eqwave.html
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Wave propagation

Surface wave at free surface:
1. Ground surface or
2. Tunnel surface
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Typical waveform of an earthquake
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Seismic Frequency Bands of Interest (Hz)

Grzegorz Kwiatek et al. / Procedia Engineering 191 (2017) 618 — 622 100000
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Seismic Scaling
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/ data stream /

Seismic/AE

Feasibility
Study-
Monitoring
design

/

Typical AE/seismic data processing flow
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Event Harvesting

LTA STA

First step is the detection of
AE arrivals within the
recorded data stream

Scan the acoustic stream for
triggers (potential events)

wingows a8 Compansd 5 esmaeiommieeasem——u—————————
windows are compared to m'

identify arrivals

Coherence accross the array
must also be considered

16000

“on 2000 4000 6000 8000 10000 12000 14000
Time (ms)
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Trigger classification: Noise

Example electrical noise

o e et Grewe (e e

u“[I“Jllhm i

(w1 w T,_(._m Al W on s vene ?,_r._;{uﬁ, 4 <0l

4 (X

v ot [I'I]"“m
» !

3 )

|8o)s el

IR0 B
- -

3 Pad O

[fie=1

appliedseismology.co.uk

34



Trigger classification: AE event
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Trigger classification: MS event
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Event Rate

e First order result from
seismic monitoring is
provided by the MS event
rate.

e Activity is closely related to
stress changes imposed on
the rock.

e Changes in event rate can
indicate the development of
significant damage or the
likelihood of major failure

appliedseismology.co.uk
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The interpretation must take into account any
external factors affecting the array sensitivity:

Changes in monitoring times
Array upgrades or loss of instruments.
Sources of “noise”

ASC
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AE event location

Standard lterative Methods
Simplex
Geiger

Direct Grid Search Methods:

Single velocity models
Complex velocity models:
Raytracing
Wavefront construction.

Other
Joint Hypocenter
Relative Location
Genetic Algorithms, etc

appliedseismology.co.uk

Earthquake Location
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Phase Picking

Similar to Event harvesting, typically double

window (STA/LTA) are used to automatically
identify phase arrivals.

Picking function value and window sizes are
determined by the signal-to-noise ratio of the
signals.

Alternative options include searching for
polarisation, or changes in frequency domain.

STA

Pt TA
WAV Uw

Picking function = Amp(STA) / Amp(LTA)

ASC
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Microseismic event location

2-D section of travel time grid

Travel Time

0.243
0.216

0.169

Depth

0.162

0.135

0.108

0.081

0.054

0.027

0.000

Event location is based on finding the position in
space that minimises the residual

Depth

r=ti-to-Ti(Xo Yor Zo)

where t=measured arrival time; T,= theoretical arrival
time

200 300
Distance

Different search algorithms are used in the inversion
process, i.e. the finding of the optimal solution for all
sensors.

Depending on the complexity of the velocity model and the array geometry, solutions might
not be unique. This requires further inputs (e.g. source vector, fracture information..)
appliedseismology.co.uk



Residual Space

(&) InSite Seismic Processor (Win32) - ONG_AMD_Downhole.pcf
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Location Uncertainty

A number of factors affect the quality of the location results:

Uncertainty in the positions of sensors.

Knowledge of velocity structure.

Picking errors on waveforms.

Method and norm applied for the solution.

Spatial coverage of sensor array.

Perturbation to raypaths by voids or damaged material.
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Distribution of Events

Main source of information of the
fracturing process is provided by
the number and location of AE
events.

Analysis of spatial and temporal
distributions of AE activity during
different stages allows the
detection of different fracturing
behaviour and responses to stress
changes.

appliedseismology.co.uk
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LEA Lombos (ERGO) Associates Ltd
Geo-Engineering Instrumentation Systems
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Lab-scale seismicity: Understanding Earthquake Cycles

LEA Lombos (ERGO) Associates Ltd
W E W E W E W Geo-Engineering Instrumentation Systems
A
1905,
mm
v >

A:Cycle 1 B: Cycle 2 (0 - 450 MPa) C:Cycle 2 (465-476 MPa) D: Aftershocks

Thompson, BD Young, RP and Locker, DA, (2009). JGR, Vol;.114, B02205.



Lab-scale seismicity: Understanding Volcanic Seismicity

LEA Lombos (ERGO) Associates Ltd
) Ggo-Engineering Instrumentation Systems

AE signal,Volts

Frequency, kHz
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Benson PM, Viciguerra S, Meredith PG and Young RP (2008), Laboratory Simulation of Volcano Seismicity, Science, Vol 322, 249-252.
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An brittle failure example

N
____________________ —zstrain |.................. B
7]
(=3
=y strain ®
»
. »
.................... — x strain
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02
Axial Strain

appliedseismology.co.uk

19:01 - 19:06
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19:06 - 19:11

19:16 — 19:21

A 19:01 LEA Lombos (ERGO) Associates Ltd
Geo-Engineering Instrumentation Systems

B 19:11

C 19:21

D 19:28
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An brittle failure example

LEA Lombos (ERGO) Associates Ltd
Geo-Engineering Instrumentation Systems
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Integrating timing and location: SKB example

appliedseismology.co.uk
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MS Monitoring of EDZ Evolution: TSX Case

appliedseismolo

A TUNNEL EXCAVATION 3732 Events

c

BUILDING CLAY BULKHEAD 196 Events
E CHAMBER PRESSURIZATION TO 4MPA 46 Events

B BULKHEAD KEY EXCAVATION 3098 Events

D

CHAMBER FILLING AND PRESSURIZATION TO 2MPA 373 Events F. HEATINGORGRAMBER 67 Events

433 Events

G  COOLING AND DEPRESSURIZATION

y.COo.uK

Repository-wide lower-frequency geophone network can be used to
monitor microseismicity during and post-excavation of the facility in
order to get a full image of the EDZ and the stability of the facility
against stress changes imposed by thermal loads and pressurization

ASC
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Distribution of Microseismicity

Analysis of spatial and
temporal distributions of
induced seismic activity
during different stages
allows the detection of
different fracturing

behaviour and responses t
stress changes.

appliedseismology.co.uk
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Fractures imaged by gaps in seismicity: Downhole example
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<200

250
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Correlation with engineering data

Seismicity compared with Treatment Procedure

appliedseismology.co.uk
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MS Monitoring: Identification of Active Faults

Engineering operations
trigger seismic activity that
can be used to delineate
pre-existing faults
activated through the
stress changes imposed

appliedseismology.co.uk
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around pre-existing fault in
Dongjiahe Coal Mine (Cheng
et al., 2018)
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Focusing the image: Relative location of induced events

An alternative method to overcome the uncertainties in velocity model during location inversion is the relative location of
events located in close proximity

This provides an accurate image of the internal structure of the seismic cluster.
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Source parameters: characterising the fractures

ASC |

Fitting a source model to the recorded displacement spectra allows computing parameters that
describe the source

M, = uAd <:>M0=

where:
u =shear modulus (units N/m?)
d=slip displacement, A=fault area

appliedseismology.co.uk
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Event Magnitude

The traditional measurement of earthquake size/strength is ‘magnitude’, which is a
number based on the measurement of the maximum motion recorded by a seismic
instrument, corrected for distance and instrument response.

Earthquake magnitude (M,) was first introduced by Charles Richter in 1935. Determined
from the log of the peak amplitude of displacement on a Wood-Anderson seismograph.

Most common magnitude calculations: Mg
9l
* M, =local or Richter magnitude My
L . Mp-Ms-M (Udias, 1999)
* M.=surface wave magnitude 8t My
* my=body wave magnitude
'7 =
* m,=moment magnitude
All magnitude scales should yield 6|
approximately the same value for any
particular earthquake. 51/ . ! @s
5 6 7 8 9
M, is considered appropriate over the Fig. 15.5. The relation among the magnitudes Mg, my,, and M.

largest range.



Moment Magnitude

ASC

Seismic moment has become the most universal measure of

the size of a seismic event.

M, =C-logM, +D

where:

M, = seismic moment (units Nm)
C,D = variables; (e.g. C=2/3,
D= -6 from Hanks and Kanamori (1979))

M,=u-d A

where:
K =shear modulus (units N/m?)
d=slip displacement, A=fault area

appliedseismology.co.uk
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Seismic Magnitude: estimated source strength

s Explosive equivalent | Faultradius | _____Siip

1 Megaton 10-40 km 5cm-1m

1 kiloton 1-4 km 0.5-10 cm
1 ton 100-400 m 0.5mm-1cm

1 kg 10-40 m 0.05-1 mm

19 1-4 m 5-100 ym

1 mg 0.1-0.4 m 0.5-10 ym

Magnitude Energy (Joules) Potential Energy (1 m Kinetic energy (Projectile)
weight drop)

4

appliedseismologyAfter Maxwell, 2014

63,000 6,300 kg
Rifle
2,000 200 kg
Pistol
63 6 kg
Air rifle
2 200g
Champagne cork
0.06 69

ASC

58



ASC |

Equivalent Magnitude

Vibration M @ 2.5 km M @5 km M @10 km
Source
Car 0.4 1.0 1.8

Bin-Lorry 1.3 1.9 2.7
Bus 1.2 1.8 2.6
The Big One 1.6 2.2 3.0
Tram 1.8 2.4 3.2

Edwards and Reyes-Montes, 2018

—ML=0 =——=ML=1 =—ML=2

Displacement (mm)
o
o
S
=9

0.0001

0 = 10 15 20

. . Distance (km)
appliedseismology.co.uk



Analysis: b-value

Based on Gutenberg Richter Magnitude-Frequency law (1954):

appliedseismology.co.uk

Log (Number of events)

log,, N=2a-

where N is the number of events with magnitude <M.

bM,

II..............

o3 y =-0.96x + 1.8116
oo R*=0.9887

Local Magnitude

The worldwide
tectonic average
is b~1

ASC
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B-value: Failure Precursor

Evolution of the b-value for the events located at the bottom of the open pit of Palabora mine.
Mw=-1.4~1.3

b-value using Mw > 0.1
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Analysis: b-value

High b-values are associated with having a greater proportion of smaller events, i.e.:

Normal faulting; whilst low values suggest thrust faulting (Schorlemmer et al., 2005).
High thermal gradients (Warren & Latham, 1970)

High heterogeneity & fracturing (Mogi, 1962)

Low applied stress (Wyss, 1973)
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Fracture Geometry

\ |
View Onto Fracture Plane (N60E)

110 060° 4-’-» 240°

1100

4
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£ _
ZE 600 oh L 547 Evants scaled to Time ‘
500 _.ﬁ# g | E— —
400 :,# Single Wing No
w0 | Breakthrough No
| Fracture Network Wing Length 135 m (NE-wing)
alit (i) '_'_ £ Fracture Network Length 240 m
100 o 100 | MapView Fracture Network Height 70 m
Fracture Network Width 50m
Fracture Network Top 1,174 m TVDSS
Fracture Network Bottom 1,244 m TVDSS
Fracture Network Azimuth 60 degrees E of N
Fracture Network Plunge 0 degrees
Fracture Network Volume 440x103 m3
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Interpretation of induced fracturing from seismicity

The fractures induced or mobilised due to stress changes (e.g. natural or engineering processes) radiate elastic energy
recorded as microseismic events.

The statistical analysis of the locations of the seismic events can be used to interpret the geometry of the fractures.

Characterization of
induced fracture
network

MS catalogue

T o - [ |

Frequency

I 12345678910111213141516
Inter-plane distance

64
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Fracture Network Interpretation

Conceptual diagram showing the interpretation of fracture network spacing and persistence from the inter-plane
and inter-event separations within example events fitting planes following the observed dominant orientation.

appliedseismology.co.uk
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Analysis of Fracture Network Geometry

g 8 8

Number of events

i 200
Qo
o 100
0
50
45
4.0
3.5
3.0
2.5
2.0
1.5
1.0
05

appliedseismology.co.uk

ASC

Vertical and sub-vertical structures
Horizontal and sub-horizontal structures

— Poorly defined structure
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Evolution of slip/fracturing from Microseismic record

Spacing
O o5m
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Mining Induced Seismicity

Cave mining: Seismic
monitoring is used to
image the upward
progress of the cave
as material is removed
from the undercut
level

68
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Fracture propagation:

Role of interaction and coalescence

Inetiation of macro-scale 1V

tallure

Crack coalescence "~ -
Stabla Cratk Giowth 11

1 -
Crack initiadion 19
Elpstic Region Il g -
; Enlmh. Elnﬁiurll I

0.2

0.9 012 -0.08 -0.04
Lateral Sirain %

appliedseismology.co.uk

888888

(000) SHaBAT T §0 JBQUIng

Ty O
P =i
~ o
~
o >
0o e

Cai et al., 2004
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Fracture interaction

The interaction and eventual coalescence of
neighbouring cracks is directly correlated with
irreversible damage in the rock mass.

The Cluster Index (Cl) is based on the concepts of
critical crack spacing and local crack density (Lockner
et al., 1992). It combines source location and
effective event size idealizing MS events as
representing spheres, with radii equal to their source
radii, which contain the source crack.

This parameter is calculated taking into account all
neighbouring events, and can be calculated through
time to monitor the degree of damage imposed on
the rock mass.

appliedseismology.co.uk
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Clustering-coalescence analysis

Provides better resolution of fracture networks.
Identify the volumes where cracks are
interconnecting to create potential fluid
pathways or unstably growing factures.

Use of k-means for grouping of events in clusters

Cl is a powerful method for identifying
‘potentially’ interacting or coalescing cracks.

The higher the Cl, the more likely permanent
damage is occurring in the rock mass

appliedseismology.co.uk
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Spatial Clustering

Playback Mode E'
“CH <« » M il se .

1836 Events for 13-03-2002 11:55:58.11 to 02-11-2002 08:22:14.59
27-06-2003

POS = 5.34e+004, 1.22e+004, 3651)

01-03-2002

b0 10]03:27:02.88

58339 Events scaled to Location Magnitude
]
0.250 0500

0.0
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Fracture coalescence as a damage estimator

Once calibrated, the parameters can be calculated for a
series of microseismic catalogues in order to provide a
guantitative estimator of the effectiveness of an engineer
operation to induce fracturing.

The use of the damage parameter allows direct
comparison between different operations.

appliedseismology.co.uk
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Fracture coalescence: Failure precursor |

ASC

All Seismicity
(scaled to
magnitude)

Interacting
seismic events
(scaled to Cl)
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Fracture coalescence: Failure precursor |l

The relative abundance of Slope failre
clustered events during the 05
undercut and production of
Palabora underground cave shows " 0
a steep increment in the 2-month § - /
period preceding the failure of the 3
open pit’s north slope. § 0.3 .A_Ga.#
[
=202
E f
0.1
0 . ; . ;
06/12/99 19/04/01 01/0902 14101404 28005105 10/1 006

Date
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