Cracking a Brasil Nut

Simple Overview of Santos Pre-Salt Geology and Example of a Development
Presentation Structure

• Working with Brasilian data
• Introduction to Santos Basin Pre-Salt
• Santos Basin Stratigraphy and Play
• Barra Velha reservoir components, mineralogy and depositional model
• Barra Velha reservoir quality
• Sapinhoá development
• Santos Pre-Salt performance and growth
Working with Brasilian Data

• Well Names
• Field Names

Brasil Data: Well names and numbering

• “Local” names/numbering
 - 1- Exploration e.g. 1-SPS-55
 - 3- Appraisal e.g. 3-SPS-82A
 - 4- Step-out appraisal
 - 7- Producer e.g. 7-SPH-16-SPS
 - 8- Injector e.g. 8-SPH-09-SPS
 - 9- Reservoir data acquisition e.g. 9-SPS-95
 - SPS- Sao Paulo state
 - RJ5- Rio de Janeiro state

• ANP database names/numbering
 - 3-SPS-69 = 3-BRSA-788-SPS well

Block and licence names

• Renaming on declaration of commerciality
 - Carioca -> Lapa
 - Guara -> Sapinhoa
 - Tupi -> Lula
 - Iara -> Berbigao, Sururu & Atapu
Santos Basin Pre-Salt

- >150 km from shore
 - Lula and Sapinhoá >250 km from shore
- Mainly in water depth >2000 m

Deep water capabilities

- Leading deep water developer
- Success through innovation and leveraging technology
- Brazil in moderate depth
Role of Pre-Salt Reservoir in Brasil Production

Oil Production in Brazil

2 exclusively Carbonate Reservoirs

<table>
<thead>
<tr>
<th>Thousand Barrels/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
</tr>
<tr>
<td>900</td>
</tr>
<tr>
<td>800</td>
</tr>
<tr>
<td>700</td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

LULA RONCADOR SAPINHOA JUBARTE MARLIN SUL

Pre-Salt
Santos Basin Pre-Salt Reservoir

Brazil: Santos Basin
Advantaged portfolio

Industry off-shore resource base¹

<table>
<thead>
<tr>
<th>Region</th>
<th>Billion barrels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santos Basin</td>
<td>30</td>
</tr>
<tr>
<td>UK North Sea</td>
<td>40</td>
</tr>
<tr>
<td>Gulf of Mexico Deepwater</td>
<td>10</td>
</tr>
<tr>
<td>Angola Deepwater</td>
<td>5</td>
</tr>
<tr>
<td>Nigeria Deepwater</td>
<td>2</td>
</tr>
</tbody>
</table>

- Santos basin top tier deep water acreage early in life-cycle
- Significant learning curve potential and upside

Significant growth and resource potential

¹ Source: Wood Mackenzie Upstream Data Tool August 2016 for the produced / remaining reserves and Exploration Tool March 2016 for the yet to find resource
Production

~1.34 million barrels of oil/day

- **Barracuda**
 - Oil: 2.9 M bbl/d
 - Gas: 43 M m³/d

- **Caratinga**
 - Oil: 14.3 M bbl/d
 - Gas: 211 M m³/d

- **Pampoa**
 - Oil: 276 bbl/d
 - Gas: 12 M m³/d

- **Rapu**
 - Oil: 29 M bbl/d
 - Gas: 388 M m³/d

- **Lula** (37 wells)
 - Oil: 763.4 M bbl/d
 - Gas: 13.6 WM m³/d

- **Sapinhoa** (12 wells)
 - Oil: 260 M bbl/d
 - Gas: 9.7 MM m³/d

- **Jubarte** (9 wells)
 - Oil: 137.8 M bbl/d
 - Gas: 4.7 MM m³/d

- **Bateia Franca** (2 wells)
 - Oil: 34.3 M bbl/d
 - Gas: 1.2 MM m³/d

- **Bateia Azul** (5 wells)
 - Oil: 41.2 M bbl/d
 - Gas: 1.4 MM m³/d

- **Marlim Leste** (4 wells)
 - Oil: 21.3 M bbl/d
 - Gas: 342 M m³/d

- **Marlim**
 - Oil: 2.2 M bbl/d
 - Gas: 68 M m³/d

- **Voojior**
 - Oil: 2.7 M bbl/d
 - Gas: 63 M m³/d

June/2017

Potential for Giant Oil Fields

- **Pre-salt fields under development phase:**
 - Buzios
 - Sepia
 - Berbigão
 - Sururu

- **Libra Accumulation**

- **Great prospectivity for oil:**
 Most part of the recoverable resources are yet to be produced

Productivity

10 most productive Pre-Salt wells:

- LL Lula
- SPH Sapinhoa

June/2017
TUPI LEAD = LULA (SQUID) FIELD
Tectonic setting and stratigraphic architecture of an Early Cretaceous lacustrine carbonate platform, Sugar Loaf High, Santos Basin, Brazil
J. P. Buckley, D. Bosence and C. Elders
Barra Velha Reservoir Components

- Microbial macrostructures which resemble classical stromatolites are rare (<0.5% of thickness of logged sections)
- No modern lacustrine carbonate systems produce large differentiated platforms and seismic-scale clinoforms
- No analogues are currently known from the geological record of similar lakes
Barra Velha Reservoir Components

The Pre-salt Play

Buzios Field – Facies Example

Schrubs

8.85 meters

2.0 cm

2.0 cm

Importance of Carbonates for Brazil: Historical Successes and Future Perspectives
Barra Velha Reservoir Mineralogy

- Calcite
- Dolomite
- Stevensite
- Quartz

\[\text{Ca}_{0.15}\text{Na}_{0.33}\text{Mg}_{2.8}\text{Fe}^{2+}_{0.2}\text{Si}_{4}\text{O}_{10}(\text{OH})_{2} \cdot 4(\text{H}_2\text{O}) \]

A) Slightly silicified spherulites (red arrow) in a clay matrix replaced by dolomite (yellow arrow) (XPL).
B) Partially silicified spherulites (red arrow), displacing and replacing clay laminae (yellow arrow). Dolomite is interpreted as a result of mimetic replacement of stevensite (XPL).

How Big Was The Barra Velha Lake?

The Pleistocene Great Lakes of Western North America by Martin W. Lewis, April 16, 2012

Source: http://www.geocurrents.info/geonotes/the-pleistocene-great-lakes-of-western-north-america#ixzz5AhF0A8bB
How Deep Were The Lakes?
The case for a shallow versus a deep lake with high relief platforms

• Most seismic features attributable to carbonate buildups are not present in the Barra Velha.
 – In most cases the seismic features can be explained by syn- and especially post-Barra Velha faulting, including local inversion, and erosion, rotated onlap geometries
 – Some may even be volcanic in origin including lava deltas
• Long-range correlations using well logs indicate that current relief across the basin did not exist at the time of deposition and is due to post-Barra Velha structuration
• The facies model, supported by geochemical modelling, suggests shallow evaporitic lakes
• Provisional isotopic data suggest the lakes were shallow and evaporitic, with no large water body nearby
• Total thickness of correlated package (so-called “Lula’s fingers”) varies from 20.8 to 28.5 m (mean = 24.3 m).
• 9 gamma-defined cycles (mean thickness 2.7 m) comprise one or more shallowing-upwards cycles defined by basal laminites.
• Cycles are well sampled by core and SWC, and facies are very similar in all wells and include a range of unequivocally shallow-water facies (e.g., microbial laminites and stromatolites).
• Cycles were deposited at same water depth but are now separated by > 1 km vertical relief, indicating significant post-depositional, but pre-salt structuration.
Barra Velha Depositional Model
The facies and the occurrence of cyclothems support a shallow evaporitic lake model - Wright & Barnett 2015

- Facies 1: Calcite shrub cementstones, with Mg-silicates or patchy traces of former Mg-silicates
- Facies 2: Calcite spherulite floatstones, with Mg-silicates or traces of former Mg-silicate matrices
- Facies 3: Laminated calcimudstones with prominent ostracodes and vertebrate debris, early silica nodules
- Reduction of gel precipitation allows rapid growth of calcite crystal shrub framestones by asymmetric growth of spherulites into lake waters
- Evaporation triggers Mg-silicate gel precipitation; pH >9.5. Mg rapidly depleted. = low Mg/Ca. Spherulites grew in Mg-silicate gels, in low densities.
- Flooding phase; reduced alkalinity-salinity allows influx of ostracodes and vertebrates; also triggers silica precipitation as pH drops

Does the Lake Model Explain Everything?
Pyramid Lake, Nevada

Large sub-lacustrine spring mounds develop in perennial lakes – they need the space (depth) in which to grow.
Deposition, Diagenesis and Reservoir Quality

Deposition, Diagenesis and Reservoir Quality

Distribution of pore throats of studied samples and their interpreted relationship with the pore type (each colour represents one sample):

The Sapinhoá field located in the southern Brazilian Santos Basin, 310 kilometres off the coast of Rio de Janeiro in a water depth of 2,153 m.

It was discovered in 2008 and originally named Guará field.

The oil field is operated by Petrobras and owned by Petrobras (45%) Repsol Sinopec Brazil (25%) and Shell (BG Brasil (30%)).

The total proven reserves of the Sapinhoá oil field range from 1,100–2,000 million barrels

The porosity of Microbial limestone section is 10-20% and the permeability is 300-3000md.

Sapinhoá Pilot Development

- Sapinhoá structure is a long, relatively straight, asymmetrical NE-SW trending horst defined by faults and fractures.
- The depositional model indicated that the reservoirs were deposited on a carbonate platform developed as a shallow water horst and amplitude and impedance analysis indicated that the best reservoir properties correlated with the structural highs.

From: Naveiro, J.T. and Haimson, D. 2015. Sapinhoá Field, Santos Basin Pre-Salt: From Conceptual Design to project Execution and Results. OTC-26320-MS
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
</table>
| 2001 | BM-S-9 Concession Contract with ANP
 Seismic data acquisition for BM-S-9 block |
| 2008 | Wildcat discovery – 1-SPS-55 (P1S)
 Appraisal Plan (ANP) |
| 2009 | Technical and economic feasibility study approval (Opportunity Evaluation Phase FEL 1 Gate)
 Process of acquiring environmental licences from the Brazilian Environmental Regulatory Authority (IBAMA) |
| 2010 | 3-SPS-69 (P1N) appraisal well drilled
 LOI to FPSO Cidade de Sao Paulo chartering
 14 Christmas tree supply contract for BM-S-9 |
| 2011 | Technical and economic feasibility study approval (Conceptual Phase FEL 2 Gate)
 2 appraisal wells drilled (P2S and I1S)
 P1S EWT
 Decoupled gathering system contract (steel catenary risers (SCR) on buoy supported risers (BSR))
 DECLARATION of COMMERCIALITY (ANP) |
| 2012 | Technical and economic feasibility study approval (Basic Engineering Phase FEL 3 Gate)
 Start of drilling campaign
 Umbilicals and flexible lines (gathering system) contract
 Environmental licences authorization
 Gas pipeline installation
 FPSO mooring and first well hook-up |
| 2013 | Sapinhoá FIRST OIL – 05/01/2013 |

From: Naveiro, J.T. and Haimson, D. 2015. Sapinhoá Field, Santos Basin Pre-Salt: From Conceptual Design to project Execution and Results. OTC-26320-MS
The first well to be connected to the FPSO, 1-SPS-55, can produce over 25,000 barrels of oil per day.

Production though will be restricted to 15,000 barrels of oil per day, until the commissioning of natural gas processing and reinjection systems is concluded, which is expected to last 90 days.

The produced oil, which is of intermediate density (30º API) and high quality, will be transported through tankers.

The gas not used for reinjection will be transported through the Sapinhoá-Lula-Mexilhão Gas Pipeline to the Monteiro Lobato Gas Treatment Unit (UTGCA), located in Caraguatatuba, on the São Paulo state coast.

Another 10 wells (five production and five injection) will be interconnected to the platform in the coming months.

Peak production of 120,000 barrels of oil per day is expected for the first half of 2014.

The Sapinhoá field is one of the biggest oil fields in Brazil with a total recoverable volume estimated at 2.1bn barrels of oil equivalent (boe).

It goes into commercial production four and a half years after it was discovered in July 2008.

<table>
<thead>
<tr>
<th>Well Type</th>
<th>Geometry</th>
<th>Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producers</td>
<td>Vertical (6)</td>
<td>Simple (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selective (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intelligent (2)</td>
</tr>
<tr>
<td>Directional (2)</td>
<td>Simple (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intelligent (1)</td>
</tr>
<tr>
<td>WAG injector</td>
<td>Vertical (1)</td>
<td>Intelligent(1)</td>
</tr>
<tr>
<td>Gas injector</td>
<td>Vertical (1)</td>
<td>Intelligent (1)</td>
</tr>
<tr>
<td>Water injector</td>
<td>Vertical (3)</td>
<td>Intelligent (3)</td>
</tr>
</tbody>
</table>

From: Naveiro, J.T. and Haimson, D. 2015. Sapinhoá Field, Santos Basin Pre-Salt: From Conceptual Design to project Execution and Results. OTC-26320-MS
BG Group said it has started a new extended well test in the Sapinhoá North area of the BM-S-9 concession in the pre-salt Santos Basin marking the delivery of another milestone in the field development plan. The FPSO Cidade de São Vicente was connected to the 3-BRSA-788-SPS well, in water depths of 2140 metres.

The FPSO will operate in the area for up to six months, gathering technical information on reservoir behaviour and oil flow in the subsea lines, amongst other data. During this initial test phase the well is expected to produce at around 15 000 bopd – as authorised by Brazil’s National Agency for Petroleum, Natural Gas and Biofuels.
Sapinhoá Norte Development

- Production commenced 20 November 2014
- The Cidade de Ilhabela has capacity to process 150,000 barrels of oil per day and 212 million standard cubic feet per day of natural gas.
- Injection capacity 180,000 bpd
- First well, 3-SPS-69, potential for 32,000 bopd
- The oil produced from Sapinhoá is high quality and of medium density (29° API). Gas not used for reinjection will be transferred to shore through the Santos Basin pipeline system.
- The hull was converted from a tanker at the CXG shipyard, in China, while the integration of the process plant modules took place at the Brasa Shipyard, in Niterói (RJ).

Petrobras Press Release 01 December 2014
Brazil: Santos Basin

Competitive growth

- Learning curve resulting in significant cost reduction
- Exceptional well productivity
- Low breakeven prices

Drill and complete time

Average number of days

<table>
<thead>
<tr>
<th>Year</th>
<th>2010</th>
<th>2013</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days</td>
<td>300</td>
<td>200</td>
<td>70%</td>
</tr>
</tbody>
</table>

Well performance

Top 10 pre-salt producer wells - ANP

- Lula #1
- Lula #2
- Lula #3
- Lula #4
- Sapinhoa #1
- Lula #5
- Lula #6
- Sapinhoa #2
- Sapinhoa #3

Brazil pre-salt breakeven price

$ per barrel forward looking breakeven price

- Producing assets
- Development assets

Future volumes

Lula FPSO Cidade de Saquarema

Royal Dutch Shell Shareholder presentation 2016: deepwater-brazil-shareholder-visit-2016
Brazil: Santos Basin
Competitive growth

- Petrobras operated
- Significant development in progress
- Impressive delivery track record

<table>
<thead>
<tr>
<th>Committed FPSO</th>
<th>Oil capacity (Kbbl/d)</th>
<th>1st oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Lula Pilot</td>
<td>100</td>
<td>On stream</td>
</tr>
<tr>
<td>2 Sapinhoá South</td>
<td>120</td>
<td>On stream</td>
</tr>
<tr>
<td>3 Lula NE</td>
<td>120</td>
<td>On stream</td>
</tr>
<tr>
<td>4 Sapinhoá North</td>
<td>150</td>
<td>On stream</td>
</tr>
<tr>
<td>5 Iracema South</td>
<td>150</td>
<td>On stream</td>
</tr>
<tr>
<td>6 Iracema North</td>
<td>150</td>
<td>On stream</td>
</tr>
<tr>
<td>7 Lula Alto</td>
<td>150</td>
<td>On stream</td>
</tr>
<tr>
<td>8 Lula Central</td>
<td>150</td>
<td>On stream</td>
</tr>
<tr>
<td>9 Lapa</td>
<td>100</td>
<td>2016</td>
</tr>
<tr>
<td>10 Lula South</td>
<td>150</td>
<td>2017</td>
</tr>
<tr>
<td>11 Lula North</td>
<td>150</td>
<td>2017</td>
</tr>
<tr>
<td>12 Berbigão</td>
<td>150</td>
<td>2018</td>
</tr>
<tr>
<td>13 Lula Extreme South</td>
<td>150</td>
<td>2018</td>
</tr>
<tr>
<td>14 Atapu South</td>
<td>150</td>
<td>2019</td>
</tr>
<tr>
<td>15 Atapu North</td>
<td>150</td>
<td>2021+</td>
</tr>
</tbody>
</table>

1 The Berbigão, Suruco and Atapu accumulations are subject to unitisation agreements
Reference Material

- ANP: Brazilian Carbonate Fields - a perspective (PPT) 2015
- ANP: Brazilian Pre-Salt prospectivity (PPT) 2016
- Petrobras: Santos Basin - 40 years from shallow to ultra-deep water 2013
- Shell: Brazil Shareholder visit 2016. Reshaping Shell to create a world-class investment case
Thank You