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European Coal Bed Methane

Challenges and Cause for Optimism
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Unconventional v's Conventional Reservoirs

Conventional Conventional Conventional

gas CBM/ECBM gas oil
(structural) il (stratigraphic) (structural)

Tens of miles

- .y
< >

In CBM, coal is the source and__ the reservoir — concepts of trap and seal don’'t appl vy
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Coalification and CBM
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Coalification and CBM

Yield ft3/ton
1600 3200 4800

Nitrogen

100
Yield cm®/g

Coalrank  Temp.
6400 °C

From Rightmire (1984),
after Hunt (1979); Karwell (1969)
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Effect of Maceral Content on Gas Generation

Macerals — the microscopic mineralised remnants of the original coal-forming vegetation

45

Methane
Released 30
m3ft

15

Vitrinite Group

Bright coal originating
from woody and cortical

plant tissue.

More oxygen

Coalification gas:

y
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Bit.

Rank (%C)

95

Anth.

Exinite Group

Comprises spore cases,
spores, cuticles and resins

More hydrogen
Coalification gas:
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//’\
wh A
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Bit. Rank (%C) Anth.

Inertinite Group

Structure with close
resembance {0 woody
charcoal with well-
developed cellular structure

More carbon - =
Q Inertinite macerals have:

Coalification gas: — Least potential for gas

generation during
coalification

45 — Lower
chemical/physical

/ adsorption capacity
30 — Emit free gas from
/ skeletal structure very

/ rapidly
15 / — Desorb very slowly
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CBM Storage Capacity and Langmuir’s Isotherm

Storage capacity of coal is

~ 1008 related to formation pressure
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< 800 l Also influenced by coal rank, maceral content
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Gas Storage Mechanisms in Coal
Effects of Temperature and Pressure

Amount of CH, Amount of CH, Amount of CH,

— —— —_—

~ 1500 m
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Figure 4-7: Combined effect of pressure and temperature increase with increasing depth on the amount of
methane, assuming normal geothermal gradient and hvdrostatic pressure.

Gas content and storage capacity of coals varies wi  th time depending on
temperature and pressure conditions — burial history
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Gas Storage Mechanisms in CBM

1. Physical adsorption — intermolecular
(van der Waals) forces bind gas to coal
surface in micropores

2. Chemical adsorption — sharing or
transfer of an electron between gas and
coal surface in micropores

3. Free gas — gas stored in the natural
fractures (cleats) and open pores

Gas held in
Face Cleats
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CBM Production Mechanism

Depth (ft, assuming normal pressure gradient of 0.433psi/ft)
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Reservoir Comparison and Production Profile

Conventional Gas Reservoir

Coalbed Methane Gas Reservoir S
Airth Pilot Development

Decline

stage

Me
Wﬂ

Water production rates

VOLUME

10, 20, 30, 40... years
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CBM Play Quality and Success Factors

Coal Specific Criteria

Primary Criteria

Gas Content
Saturation
Permeability
Seam Thickness

Secondary Criteria

Depth

Net Coal

Coal Rank

Maceral Composition
Ash Content

Cleat Orientation
Cleat Mineralisation
Water Saturation
Stress Regime
Faulting / Structure
Burial History

Other Factors

Operational Factors

Topography

Land Ownership / Use
Environmental Designations
Water Disposal Options
Drilling Rig Availability
Service Company Capacity
Local Support / Opposition

Economic Factors

Access to Market
Off-take Infrastructure
Tax Regime

Capital Costs

Flow Rates

Gas Price / Margin
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European CBM

Paradigms and Challenges

General Pessimistic View of European CBM

Basins are

Coals are

Service Industry is

Stakeholders are

No Tax Incentives

too small
densely populated

too thin

too deep

low permeability
structurally deformed
undersaturated

almost non-existent
expensive (O&G focus)

negative
unengaged
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European CBM
Causes for Optimism

Coals high gas contents
high saturations (locally)
good net coal thicknesses

Economics high gas prices
good potential margins
well developed off-take infrastructure
effectively infinite market

Technology rapid development of horizontal drilling t echniques
new service companies targeting CBM

Production encouraging early production results in S cotland
Taxation tax royalty regime is more attractive than some PSC
regimes
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European CBM Challenges
Older Coals with Complex Burial Histories

Lublin Basin (Chelm} Gas Content vs. Depth
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European CBM Challenges
Permeability
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Modified from McKee and others, 1988
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European CBM Challenges
Permeability

Primary flow mechanism

Endogenetic Cleats + Tectonic Fractures

X

Coalification process + regional stress regimes =

X

Compactional Drape

Buit Cleat
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European CBM Challenges
Permeability

10% of fractures
contribute 90% of flow p—">
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European Challenges
Stress Sensitivity v's Coal Shrinkage

CONIF:URESSIVE

STRIKE-SLIP

STRAIN/STRESS REGIME

So-

TRANSTENSIVE ﬁ TRANSPRESSIV

EXTENSIVE

-10° g o 5 10

Fig. 5. Continuous strain—stress regime map for western Eurasian Plate overlaying topography. The individual k” values calculated for each focal mechanism from the “Slip Model”
(Reches, 1983; De Vicente, 1988), were firsily filtered calculating a mean value in squares of 15 min in size and then interpolated to a 15-minute regular grid. See text for further
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European Challenges
Scale

Europe North America

San Juan Development:
7000km?

Central Valley of Scotland M ST
Coalfield B e
250km?2 Vi Sa 200

The Ruhr Valley
Coal Field
¢.3000km 2

>29.000 wells

Source: ARI Inc
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European Benefit
Market and Gas Price

12
Upside to
11 LNG export
Upside pricing
10 to gas import $8.00-512.00
Value chain parity pricing
[+] pricing upside Value chain Supply constraint
(eg CNG) pricingupside Impott
8 substitution
NSW
7 pricing upside
Demand driven
6 parity pricing
$4.50 - $7.50 $4.00 - $7.50 $4.00-57.00

5

. 8
$3.00 - 54.00

.

2 $1.50-$250 $1.50- $3.00

1

0
us$/Mcf| Gas Price Margin Gas Price Margin Gas Price Margin Gas Price Margin Gas Price Margin

B AUSTRALIA s INDIA ElcHiNa BN |\ DONESIA B curore

Margin reflects Dart estimate of range of available margin to contractor net of opex, copex, and Government take (toxes, royalties); does not reflect impact of PSC economics
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Early Success in Scotland
PEDL133 Pilot Project

16 CBM wells c?nlled | Airth Pilot
— 6 vertical appraisal —
— 6 horizontal production | “CSL""":‘:
— 4 exploration
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Early Well Designs
Toe Intersection
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Early Well Designs
Up-Dip Well — Airth 10

-3500'— TD 3524 7BRT
3000 2500 2000 1500 1000 500 0
1000m 800m B00M 700m £00m 500m 400m 300m 200m 100m
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Airth 10 Production Success

Airth 10: Gas production
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New Well Design

Produced water and gas to
separator and wellhead
compressor.

Open-hole
laterals in

coal seams. Water.and gas produced

from laterals up the
vertical pumping.well.

Wellhead
with
pumping
unit

Development wells
consist of two wellbores:

* A vertical well used for
pumping produced water
and producing gas up the
annulus.

* A directional well offset
from the vertical from
which open-hole laterals
(4) are drilled to intersect
the vertical well.
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Drilling Operations
G55 and HH102 Hydraulic Top Drive Rigs
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Airth CBM Production Site

Progressing Cavity Pump (PCP) and vent stack on Air  th 8
— Typically, new wells produce 200 barrels of water per day
Surface flowing gas pressure of ¢.225psi (15bar)

Pumps can be supplied with power generated by produced
gas

Gas composition varies: generally >90% hydrocarbons,
balance as N, and CO,

R
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Pilot Production Facilities
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